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ABSTRACT
The human gut harbors .100 trillion microbial cells, which influence the nutrition,
metabolism, physiology, and immune function of the host. Here, we review the
quantitative and qualitative changes in gut microbiota of patients with CKD that
lead to disturbance of this symbiotic relationship, how this may contribute to the
progression of CKD, and targeted interventions to re-establish symbiosis. Endo-
toxin derived fromgut bacteria incites a powerful inflammatory response in the host
organism. Furthermore, protein fermentation by gut microbiota generates myriad
toxic metabolites, including p-cresol and indoxyl sulfate. Disruption of gut barrier
function in CKD allows translocation of endotoxin and bacterial metabolites to the
systemic circulation, which contributes to uremic toxicity, inflammation, progression
of CKD, and associated cardiovascular disease. Several targeted interventions that
aim to re-establish intestinal symbiosis, neutralize bacterial endotoxins, or adsorb
gut-derived uremic toxins have been developed. Indeed, animal and human studies
suggest that prebiotics and probiotics may have therapeutic roles in maintaining a
metabolically-balanced gut microbiota and reducing progression of CKD and ure-
mia-associated complications. We propose that further research should focus on
using this highly efficient metabolic machinery to alleviate uremic symptoms.
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The gut microbiota has coevolved with
humans for a mutually beneficial coex-
istence and plays an important role in
health and disease.1 Normal gut micro-
biota influences the well-being of the
host by contributing to its nutrition,
metabolism, physiology, and immune
function.2,3 Disturbance of normal gutmi-
crobiota (dysbiosis) has been implicated
in the pathogenesis of diverse illnesses,
such as obesity,4 type 2 diabetes,5 inflam-
matory bowel disease,6 and cardiovascular
disease.7,8 Quantitative and qualitative al-
terations in gut microbiota are noted in
patients with CKD and ESRD.9–11 Prelim-
inary evidence indicates that toxic products
generated by a dysbiotic gut microbiome
may contribute to progression to CKD and
CKD-related complications (Figure 1).12,13

GUT MICROBIOTA: AN
ENDOGENOUS ORGAN

The human gut harbors a complex com-
munity of .100 trillion microbial cells
that constitute the gut microbiota. The
combined microbial genome of the gut
microbiota is known as the gut micro-
biome. In general, the adult gut is dom-
inated by two bacterial phyla, Firmicutes
and Bacteroidetes; other phyla, includ-
ing Actinobacteria, Proteobacteria,
Verrucomicrobia, Cyanobacteria, Fuso-
bacteria, Spirochaetes, and TM7, are
present in smaller proportions.14,15 Each
species of bacteria colonizes a specific ni-
che, leading to different bacterial compo-
sition along the intestinal tract (Table 1).
Gut microbiota performs a multitude of

functions and can be considered a meta-
bolically active endogenous “organ” in it-
self. Under physiologic conditions, it par-
ticipates in certain complementary
metabolic activities that have not been
fully evolved in the human host, such as
breakdown of undigestible plant poly-
saccharides,3 synthesis of certain vita-
mins,16 biotransformation of conjugated
bile acids,17 and degradation of dietary
oxalates.18 Importantly, postnatal coloni-
zation of the intestine educates our im-
mune system and reduces allergic re-
sponses to food and environmental
antigens.19

The utility of human gut microbiota
in the diagnosis, treatment, and preven-
tion of disease requires a clear under-
standing of its composition, dynamics,
and stability within an individual. A
recent study aimed at characterizing the
long-term stability of the human gut
microbiota used low-error amplicon
sequencing of fecal samples from 37
healthy adults collected over a period of
296 weeks.20 The results revealed that on
average, the microbiota was remarkably
stable over time within an individual
and between family members but not
between unrelated individuals. These
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findings further emphasize the impor-
tance of the early gut colonizers, such as
those acquired from parents and siblings,
and their potential life-long effect on our
health and disease.

Microbiota-Host Signaling
Mammalian gut microbiota forms a com-
plex ecosystem that requires proper in-
teraction with its host for symbiotic
benefits. One of the best examples of the
microbiota-host signaling is the host im-
munomodulation by Bacteroides fragilis
polysaccharide Amolecule, which directs
the maturation of the developing im-
mune system by mediating establish-
ment of a proper T-helper cell (TH1/
TH2) balance.21 The gut microbiota can
also sense host-produced molecules. For
instance, norepinephrine released in

response to stress could increase the
growth and production of virulence-
associated factors of Gram-negative bac-
teria.22 Finally, different members of the
gut microbiota also communicate for es-
tablishment or maintenance of homeo-
stasis in the intestinal ecosystem. When
germ-free mice were colonized with Bac-
teroides thetaiotaomicron and Methano-
brevibacter smithii, the latter directed
B. thetaiotaomicron to focus on fermen-
tation of dietary fructans to acetate,
whereas B. thetaiotaomicron–derived for-
mate was used by M. smithii for metha-
nogenesis.23

Intestinal Epithelial Barrier
In addition to allowing absorption of
nutrients, the intestinal epithelium also
functions as a barrier to prevent systemic

translocation of antigens and pathogens
(Figure 2A). The intestinal epithelium
is a single layer of columnar epithelial
cells that separates the intestinal lumen
from the underlying lamina propria.24

These epithelial cells are bound together
by tight junctions, making a multifunc-
tional complex that forms a seal between
adjacent epithelial cells.25 Commensal
gut microbes maintain functional integ-
rity of gut by several mechanisms, in-
cluding restoration of tight junction
protein structure,26 induction of epithe-
lial heat-shock proteins,27,28 upregu-
lation of mucin genes,29 competition
with pathogenic bacteria for binding to
intestinal epithelial cells,30 and secretion
of antimicrobial peptides.31 Probiotic
bacteria enhance intestinal epithelial
barrier function inmurinemodels of co-
litis and in patients with Crohn dis-
ease.32,33 Treating human epithelial cell
monolayers with metabolites secreted by
Bifidobacterium infantis causes an in-
crease in tight junction proteins ZO-1
and occludin while reducing claudin-2,
thus demonstrating the ability of bacte-
ria and bacterial products to modify ion
permeability and selectivity of tight
junction.26 In germ-free mice, coloniza-
tion with B. thetaiotaomicron resulted in
modulation in expression of genes in-
volved in several important intestinal
functions.34,35

Commensal bacteria also play an
important role in maintaining the in-
testinal epithelial barrier by suppressing
intestinal inflammation. Toll-like recep-
tors (TLRs) comprise a family of pattern-
recognition receptors that detect
conservedmolecular products of micro-
organisms, such as LPS and lipoteichoic
acid, recognized by TLR4 and TLR2,
respectively.36 TLR2 stimulation ef-
fectively preserved tight junction-
associated barrier assembly against
stress-induced damage through promo-
tion of phosphatidylinositol 3-kinase/
protein kinase B–mediated cell survival
via myeloid differentiation factor 88
(MyD88).37Microbiota signaling through
mucosal TLRs was also shown to be re-
quired for maintenance of intestinal epi-
thelial homeostasis and repair following
intestinal injury.38

Figure1. Thehumangut is host to.100 trillion bacteriawith an enteric reservoir of.1gof
endotoxin. Alterations in gut microbiota and impaired intestinal barrier function in patients
with CKD/ESRDhave been linked to endotoxemia and accumulation of gut-derived uremic
toxins leading to insulin resistance, protein energy wasting, immune dysregaulation, and
atheroscleroisis. CVD, cardiovascular disease; IR, insulin resistance; PEW, protein energy
wasting.
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GUT MICROBIOTA IN OBESITY
AND INSULIN RESISTANCE

Data from the US Renal Data System
shows an epidemic of obesity among the
ESRD population.39 Insulin resistance is
common in patients with CKD40 and is
in part due to a high prevalence of shared
risk factors, such as obesity and seden-
tary lifestyle. Recent findings suggest
that our gut microbiota might be in-
volved in the development of obesity
and related disorders, such as insulin re-
sistance.41–44 Weight gain is associated
with an increase in the capacity of the
microbiota to extract nutrients from
the diet and in inducing metabolic
changes in the host, such as increased
fatty acid oxidation in muscle and in-
creased triglyceride storage in the
liver.43,45 Germ-free mice ingesting a
high-fat diet do not gain weight or de-
velop adiposity; however, reconstitution
of germ-free mice gut with microbiota
from lean mice or from genetically or

diet-induced obese mice causes weight
gain.46 Gut microbiota composition is
significantly different in genetically
obese mice and obese patients compared
with lean controls.4,41 A high-fat (West-
ern) diet modifies the gut microbiota by
reducing the relative abundance of Bac-
teroidetes and increasing the relative
abundance of Firmicutes.41 An increase
of genes involved in the import and pro-
cessing of sugars in the gut metagenome
was also found in mice fed with Western
diet.44

The role of the gut microbiota in type
1 and 2 diabetes has been researched in
mousemodels. The development of type
1 diabetes in MyD88-deficient nonobese
diabetic (NOD) mice depended on the
presence or absence of the gut micro-
biota, and nearly all germ-free MyD88-
deficient NOD mice developed diabetes,
whereas colonization of these germ-free
MyD88-deficient NOD mice with a de-
fined gut microbiota (representing bac-
terial phyla normally present in human

gut) attenuated type 1 diabetes.47 Another
study compared the fecal microbiota pro-
file in lean control, obese diabetic, and
obese nondiabetic participants and
noted that diabetes was associated
with a reduction of Faecalibacterium
prausnitzii species.48 A case-control
study of type 2 patients with diabetes
found decreased Bacteroides vulgatus
and Bifidobacterium genus in the dia-
betic group compared with a healthy
control group.49 Thus, altered gut mi-
crobiota could play an important role
in the development of obesity, insulin
resistance, and diabetes.

INTESTINAL DYSBIOSIS IN CKD/
ESRD

Gut Microbiome in CKD/ESRD
Uremic patients show greatly increased
counts of both aerobic (approximately 106

bacteria/ml) and anaerobic (approxi-
mately 107 bacteria/ml) organisms in the

Table 1. Distribution and composition of the microbiota along the intestinal tract

Gastrointestinal
Tract

Normal CKD/ESRD

Phyla, Families, and
Genera of Dominant
Bacterial Species

Microbial Number
(cells/g)

Alterations from
Normal Microbiota

Stomach Lactobacillus 101

Helicobacter

Duodenum Staphylococcus 103 Human studies: increased counts10 (106–107)
Streptococcus

Lactococcus

Jejunum Enterococcus 104 Human studies: increased counts10 (106–107)
Streptococcus

Lactobacillus

Ileum Enterobacteriaceae 107

Bacteroides

Clostridium

Segmented filamentous
bacteria

Colon Firmicutes 1012 Experimental animal studies:
increased Proteobacteria and Enterobacteriaceae,
increased Escherichia, Enterobacter, Acinetobacter,

Proteus, and Proteus spp,82 and decreased
Lactobacillus and Bifidobacterium spp.82

Decreased Lactobacillaceae and Prevotellaceae11

Human studies:
overgrowth of aerobic bacteria (about 100 times)9

Decreased Bifidobacteria and higher Clostridium perfringens9

Lower species richness11

Bacteroidetes
Actinobacteria
Proteobacteria
Clostridium

Lactobacillaceae
Prevotellaceae
Fusobacteria
TM7
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Figure2. (A) Intestinal epithelial barrier and inflammatory responses in symbiotic anddysbiotic gutmicrobiota. A symbiotic gutmicrobiota
leads to development of a functional barrier, with normal amounts of mucus, pattern recognition receptors (PRRs), antimicrobial peptides
(AMPs), andsecreted IgA,which in turncontain themicrobiota in the intestinal lumenandaway from the intestinalepithelial cells.As a result,
the intestinal immune system becomes largely tolerant to the resident commensals. Similar to immune cells, the signaling cascades that
occur downstreamof TLRs (enlargedon the left) are usedbyepithelial cells todetectmicrobes throughPRRs, such as theTLR4.Briefly, upon
LPS ligation, the MYD88 is recruited, which activates the NF-kB pathway and leads to production of antimicrobial proteins and proin-
flammatory cytokines. In a symbiotic gut, epithelial cells are desensitized by continuous exposure to LPS168 or are attenuated by (1) LPS-
mediated downregulation of the IL-1 receptor–associated kinase 1 (IRAK1), which is the proximal activator of the NF-kB cascade;168 (2)
LPS-mediated induction of peroxisome proliferator-activated receptor-g (PPArg), which can divert NF-kB from the nucleus;169 or (3)
commensal bacteria-derived reactive oxygen species (ROS)–mediated inhibition of polyubiquitylation and degradation of the aortic
inhibitor of kB.170 (T bars indicate the checkpoints that are controlled by themicrobiota.) Exposure to LPS induces epithelial cells to secrete
TGF-b, B-cell–activating factor of the TNF family (BAFF), and a proliferation-inducing ligand (APRIL), all promoting the development of
tolerogenic immune cell responses to the microbiota. CD103+ dendritic cells (DCs) support the development of regulatory T (Treg) cells
secreting IL-10 and TGF-b, and together they stimulate the production of commensal-specific IgA.171 (B) Increased intestinal concen-
tration of uremic toxins associated with the progression of CKD leads to microbial dysbiosis and overgrowth of pathobionts. Pathobiont
overgrowth leads to the loss of barrier integrity and the breach in the epithelia barrier. Translocation of bacteria and bacterial components
triggers the intestinal immune system to direct a potentially harmful proinflammatory response to clear invading bacteria by secreting IL-1
and -6 from intestinal epithelial cells, promoting a TH1 and TH17 response by DCs and macrophages and producing higher levels of
commensal-specific IgG by B cells. In this context, LPS binding to its receptor complex on macrophages (enlarged on the left) results in
enhanced production of inflammatory cytokines including IFN-b, IFN-g, IL-1b, IL-6, TNFa, and IL-12, the production of which has been
shown to require activation of p38MAPK.172 Subclinical endotoxemia is a potential cause of inflammation in CKD.90–92 Dysregulated
immune response and chronic production of proinflammatory cytokines lead to systemic inflammation, which could further accelerate the
progression of CKD and development of cardiovascular disease. IkB, inhibitor of NF-kB.

660 Journal of the American Society of Nephrology J Am Soc Nephrol 25: 657–670, 2014

BRIEF REVIEW www.jasn.org



duodenum and jejunum, normally not
colonized heavily by bacteria in healthy
persons (Table 1).10 Lower intestinal mi-
crobial flora has also been shown to be
altered in patients with CKD, most nota-
bly with decreases in both Lactobacilla-
ceae and Prevotellaceae families.11 Hida
et al.9 studied the colonic composition of
microbiota in healthy controls and hemo-
dialysis patients. Analysis of the fecal mi-
crobiota revealed a disturbed composition
of the microbiota characterized by an
overgrowth of aerobic bacteria. Although
this study did not show a significant dif-
ference in the total number of bacteria, the
number of aerobic bacteria, such as Enter-
obacteria and Enterococci species, was
approximately 100 times higher in hemo-
dialysis patients. Of the anaerobic bacteria,
hemodialysis patients had significantly

lowernumbers ofBifidobacteria andhigher
Clostridium perfringens.9 Patients with
ESRD were also at a high risk of Clostrid-
ium difficile–associated diarrheas.50 Vaziri
et al.11 showed significant differences in the
abundance of 190 microbial operational
taxonomic units (OTUs) between the pa-
tients with ESRD and the normal control
individuals. To isolate the effect of renal
failure, the investigators also examined
the gut microbiota in nephrectomized
rats.11 The study revealed substantially
lower species richness as measured by
the number of operational taxonomic
units in the nephrectomized rats com-
pared with the controls.

The intestinal dysbiosis may be due to
iatrogenic causes or uremia per se.51,52

Loss of kidney function leads to secre-
tion of urea into the gastrointestinal

tract. Subsequent hydrolysis of urea by
urease expressed by some gut microbes,
results in the formation of large quantities
of ammonia, which could affect the
growth of commensal bacteria.51,52 Other
contributing factors include decreased
consumption of dietary fiber,53–55 fre-
quent use of antibiotics,56,57 slow colonic
transit,58,59 metabolic acidosis,60,61 intes-
tinal wall edema,62–64 and possibly oral
iron intake.65,66

There is high prevalence of insuffi-
ciency or deficiency in vitamin K among
patients with CKD and ESRD.67,68 Pio-
neering work of Almquist and Stokstad
has recognized the biosynthesis of vita-
min K by intestinal bacteria as an impor-
tant source in animals and humans.69

Investigators have shown that certain
strains, such as B. fragilis, Bifidobacteria

Figure 2. Continued.
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species, Clostridia species, and Strepto-
coccus faecalis, are involved in the bio-
synthesis of vitamin K.70 The lower
part of the intestinal tract, where the
bacterial density is highest, is most likely
site for the absorption of the vitamin.
Consistent with these findings, the intes-
tinal flora has been associated with
symptomatic vitamin K deficiency and
severe hemorrhage.71–73

Gut Barrier Function in CKD
The gastrointestinal system is at the
interphase between the blood and the
potentially toxic contents of the gut.74

Histologic changes, including reduction
of villous height, elongation of the
crypts, and infiltration of lamina propria
with inflammatory cells are noted in
CKD (Figure 2B).52 Uremia increases in-
testinal permeability, both in uremic rats
and in patients with CKD.75,76 The
disruption of colonic epithelial tight
junction could subsequently lead to
translocation of bacteria and endotoxin
across the intestinal wall.77–79 Studies in
uremic rats have shown marked azote-
mia, systemic oxidative stress, and
marked depletion of the key protein con-
stituents of the epithelial tight junction
(claudin-1, occludin, and ZO1) in the
stomach, jejunum, and ileum,80 as well
as penetration of bacteria across the in-
testinal wall and localization in the mes-
enteric lymph nodes.52 Hemodialysis-
induced systemic circulatory stress and
recurrent regional ischemia may also
damage the mechanical barrier of the
gut.81 In addition, factors that promote
intestinal dysbiosis may also contribute
to the leaky gut in CKD. Gut microbiome
dysbiosis is associated with bacterial
translocation, thereby contributing to mi-
croinflammation in experimental ure-
mia82 as well as in patients with ESRD.83

Endotoxin as a Cause of
Inflammation in CKD
Endotoxin, the hydrophobic anchor of
LPS, is a phospholipid that constitutes
the outer membranes of most Gram-
negative bacteria. It is continuously pro-
duced in the gut and is transported into
intestinal capillaries through a TLR4-
dependent mechanism.84 Endotoxin

circulates in the plasma of healthy hu-
mans at low concentrations (between 1
and 200 pg/ml).85,86 It is taken up by liver
and mononuclear phagocyte cells and
eventually cleared.87 Endotoxin provokes
an array of host responses by binding to
the 55-kD glycosyl-phosphatidyl-inositol–
anchored myeloid differentiation antigen,
CD14.88 LPS-binding protein is a key
modulator of cellular response to endo-
toxin.89 Endotoxin stimulates cells of the
immune system, particularly macrophages
and the endothelial cells, to become acti-
vated and to synthesize and secrete a vari-
ety of effector molecules that cause an
inflammatory response. Recent evidence
indicates that subclinical endotoxemia
is a potential cause for inflammation in
patients with CKD.90–92

Endotoxin and Atherosclerosis
The association between bacteria and
atherosclerosis has been known formore
than two decades.93 Recently, focus has
shifted from bacteria to its product, en-
dotoxin, for its role in the development
of atherosclerosis.85,94 Endotoxin is a key
factor in initiation and progression of
atherosclerosis through mediation of
endothelial cell injury, promotion of re-
cruitment of monocytes, transformation
of macrophages to foam cells, and pro-
coagulant activity.95,96 Furthermore,
vascular smooth muscle cells exhibit
profound responsiveness to even very
low levels of endotoxin.97,98 The Bru-
neck study showed that elevated endo-
toxin level is a strong risk factor for the
development of atherosclerosis in the
general population.85 Elevated plasma
level of sCD14 is noted in patients with
unstable angina and is related to in-
creased aortic stiffness and carotid pla-
que formation.99,100 Szeto et al.79

showed that circulating endotoxemia in
patients undergoing peritoneal dialysis is
related to systemic inflammation and
features of atherosclerosis. Using two
separate cohorts, we demonstrated that
sCD14 is associated with mortality in pa-
tients with ESRD.92,101

Gut-Derived Uremic Toxins
Certain intestinal bacteria can generate
uremic toxins that are absorbed into the

blood and are normally cleared by the
kidney. Protein fermentation by gut mi-
crobiota results in the generation of
different metabolites, including phe-
nols102 and indoles.103 Aronov et al.104

compared plasma from hemodialysis
patients with and without colon and con-
firmed the colonic origin of indoxyl sul-
fate and p-cresol. These are prototype
members of a large group of protein-
bound uremic toxins that are resistant
to clearance by dialysis.105 P-cresol, a
108-Da protein-bound solute, is a co-
lonic fermentation product of the amino
acid tyrosine and phenylalanine.106 Most
of the p-cresol generated by the intestinal
flora is conjugated to p-cresyl sulfate in
the intestinal wall and to p-cresyl glucu-
ronide in the liver.107 Intestinal bacteria
also have tryptophanase that converts
tryptophan to indole, which is subse-
quently absorbed and metabolized to in-
doxyl sulfate in the liver.106

Concentrations of indoxyl sulfate and
p-cresyl sulfate in the serum are nega-
tively correlated with the level of kidney
function.12 A prospective, observational
study performed in 268 patients with
CKD indicated that baseline levels of in-
doxyl sulfate and p-cresyl sulfate were
predictors of CKD progression.13 Ani-
mal studies suggest that these uremic
toxins may damage renal tubular
cells.108 In uremic rats, administration
of indoxyl sulfate mediates the renal
expression of genes related to tubuloin-
terstitial fibrosis, such as TGF-b1, tissue
inhibitor of metalloproteinases, and pro-
a 1, accompanied by a significant decline
in renal function and worsening of glo-
merular sclerosis.109 Indoxyl sulfate also
induces nephrotoxicity via organic anion
transporter–mediated uptake in the ba-
solateral membrane of renal proximal
tubular cells,110,111 where it activates
NF-kB and plasminogen activator inhib-
itor type 1 expression.110,112

Barreto et al.113 showed that an ele-
vated level of indoxyl sulfate is associated
with vascular stiffness, aortic calcification,
and higher cardiovascular mortality. In-
doxyl sulfate is a potential vascular toxin
that induces oxidative stress in endothelial
cells,114 increases shedding of endothelial
microparticles,115 impairs endothelial cell
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repair mechanism,116 and increases vas-
cular smooth muscle cell prolifera-
tion.117 Bammens et al.118 reported that
free serum levels of p-cresol is associated
with mortality in hemodialysis patients.
In vitro evidence indicates that p-cresol
inhibits cytokine-stimulated expression
of endothelial adhesion molecules—
intercellular adhesion molecule 1 and
vascular cell adhesion molecule 119—

and induces increase in endothelial per-
meability.120 Thus, gut-derived uremic
toxins contribute to progression of
CKD as well as cardiovascular disease.

TARGETED INTERVENTIONS TO
TREAT INTESTINAL DYSBIOSIS

Recent advances in our understanding of
the gut microbiome’s physiologic func-
tions and pathologic consequences of
dysbiosis have led to exploration of var-
ious ways of reestablishing symbiosis.
Most therapies targeting the colonic
microenvironment in CKD aim to mod-
ulate gut microbiota, block LPS or atten-
uate inflammation, or target adsorption
of uremic toxin end products of micro-
bial fermentation. Some of these ap-
proaches are briefly discussed below
(reviewed in Table 2).

Modulation of Gut Microbiota
Prebiotics
A prebiotic is a nondigestible (by the
host) food ingredient that has a beneficial
effect through its selective stimulation of
the growth or activity of one or a limited
number of bacteria in the colon.121,122

The candidate prebiotics include inulin,
fructo-oligosaccharides, galacto-oligo-
saccharides, soya-oligosaccharides,
xylo-oligosaccharides, and pyrodex-
trins. Prebiotics promote the growth of
Bifidobacteria and Lactobacilli species at
the expense of other groups of bacteria in
the gut, such as Bacteroides species, Clos-
tridia species, and enterobacteria.123 Pre-
liminary evidence indicates that prebiotic
oligofructose-enriched inulin (p-inulin)
promotes growth of Bifidobacteria spe-
cies, mediates weight loss, reduces in-
flammation, and improves metabolic
function.124–126 High dietary fiber intake

is associatedwith lower risk of inflamma-
tion and reduced mortality in patients
with CKD.127 Meijers et al.128 reported
that serum concentrations of p-cresol
and indoxyl sulfate are reduced by the
oral intake of p-inulin in hemodialysis
patients.

One of the mechanisms by which
p-inulin mediates weight loss may be by
enhancing satiety due to bacterial fer-
mentation and increased production of
short-chain fatty acids in the gut lu-
men.126 Short-chain fatty acids stimulate
secretion of glucagon-like peptide 1
(GLP-1)129 and peptide YY (PYY).130

GLP-1 has antiobesity and antidiabetic
actions by such mechanisms as inhibiting
food intake, stimulating insulin secretion,
and inducing b-cell proliferation.131 PYY
colocalizes with GLP-1 in the intestinal L
cells and is also considered an anorexigenic
peptide.133 Plasma concentrations of
GLP-1133 and PYY134 are reduced in obese
individuals, and oligofructose supplemen-
tation in rats resulted in reductions in en-
ergy intake and increased plasma GLP-1
and PYY concentrations.135

Probiotics
Probiotics are defined by the United
Nations’ Food and Agriculture Organi-
zation and the World Health Organiza-
tion as “live microorganisms” that when
administered in adequate amounts
confer a health benefit on the host.136

Probiotics consist of living bacteria,
such as Bifidobacteria species, lactoba-
cilli, and streptococci,137 that can alter
gut microbiota and affect the inflamma-
tory state.138,139 Treatment with Bacillus
pasteurii and Sporlac slowed the progres-
sion of kidney disease and prolonged the
life span of fifth/sixth nephrectomized
Sprague-Dawley rats.140Hemodialysis pa-
tients treated with oral Lactobacillus
acidophilus showed decreased serum
dimethylamine, a potential uremic
toxin.10 In another study, treatment
with L. acidophilus ATCC-4356 reduced
the atherosclerotic burden in ApoE2/2

mice.141 This was accompanied by an in-
hibition of translocation of NF-kB p65
from cytoplasm to nucleus, suppression
of degradation of aortic inhibitor of kB a,
and improvements in gut microbiota

distribution. Prakash et al.142 reduced
BUN in uremic rats by orally administer-
ing microencapsulated, genetically en-
gineered live cells that contained living
urease-producing Escherichia coli–DH5.

Acarbose
Acarbose is an inhibitor ofa-glucosidase
enzymes in the intestinal brush-border
that blocks the hydrolysis of poly- and
oligosaccharides to glucose and other
monosaccharides. The undigested oligo-
saccharides that enter the colon act as
fermentable carbohydrates. Evenepoel
et al.143 showed that treatment with
acarbose reduces the colonic generation
of p-cresol in healthy persons.

Gut Microbiome Transplantation
Manichanh et al.144 examined the long-
term effects of exogenous microbiota
transplantation alone and combined
with antibiotic pretreatment in a rat
model. A short intake of antibiotics pro-
duced profound long-term effects on the
rat intestinal microbiome, with reduced
gut microbial diversity. Transplantation
of a rich pool of exogenous bacteria led
to an increase in bacterial diversity and
changing the microbiome of the recipi-
ents to resemble that of the donor.
Human fecal transplantation has demon-
strated efficacy against Clostridium
difficile colitis.145

Essential Oils
The potential of essential oils as agents to
treat dysbiosis was examined in an in vi-
tro study.146 Results indicated that
Carum carvi, Lavandula angustifolia,
Trachyspermum copticum, and Citrus
aurantium var. amara essential oils dis-
played the greatest degree of selectivity,
inhibiting the growth of potential patho-
gens at concentrations that had no effect
on the beneficial bacteria examined.146

More research is needed, however, to eval-
uate tolerability and safety concerns and to
verify the selective action of these agents.

Blocking of LPS/Attenuation of
Inflammation
Sevelamer
Sevelamer is a large cationic polymer
phosphate binder that binds endotoxin in
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both in vitro and in vivo studies.147,148 A
cross-sectional study in hemodialysis pa-
tients showed that endotoxin level was
lower in patients using sevelamer.148

Subsequently, a prospective, random-
ized, open-label study further confirmed
that treatment with sevelamer reduced
endotoxin and sCD14 levels in hemodi-
alysis patients.149 Potential interaction

between sevelamer and fat-soluble vita-
mins, including vitamin A, D, E, and K,
has been proposed but remains to be de-
termined.150

Synthetic TLR4 Antagonists
he biologic activity of LPS resides almost
entirely in its lipid A component.151 The
synthetic lipid A analogue eritoran

(E5564) and the lipid A mimetic CRX-
526152 inhibit LPS signaling.153,154 In
healthy persons, E5564 blocked all of
the effects of LPS, with significant reduc-
tions in white blood cell count, C-reac-
tive protein levels, and cytokine levels
(TNF-a and IL-6).155 More recently,
C34, a 2-acetamidopyranoside, was de-
veloped. It inhibited TLR4 in enterocytes

Table 2. Effect of probiotics and prebiotics on uremic toxins, inflammation, and atherosclerosis

Reference
Patient Type/Model

(number)
Intervention Comments

Uremic toxins
Simenhoff et al.10 HD patients (8) L. acidophilus ↓ Serum dimethylamine

↓ Nitrosodimethylamine
Prakash et al.142 Uremic rats Genetically engineered E. coli ↓ Plasma urea
Ranganathan et al.173 Nephrectomized rats Various combinations of probiotics ↑ Lifespan

↓ BUN
Ranganathan et al.174 Patients with CKD (13) S. thermophilus, L. acidophilus,

and B. longum

↓ BUN
↓ Uric acid concentration

Ranganathan et al.175 Patients with CKD (246) S. thermophilus, L. acidophilus, and
B. longum

↓ BUN

Meijers et al.128 HD patients (22) Oligofructose-enriched inulin ↓ Serum p-cresyl sulfate and generation rate
de Preter et al.176 Healthy persons (50) Oligofructose-enriched inulin ↓ Urinary excretion of p-cresol
Nakabayashi et al.177 HD patients (7) Galacto-oligosaccharides, L. casei,

and B. breve

↓ Serum p-cresyl sulfate

Swanson et al.178 Healthy persons (68) Fructooligosaccharides and/or
L. acidophilus

↓ Fecal protein catabolites (beneficial)
with fructooligosaccharides

↑ Fecal protein catabolites (harmful)
with L. acidophilus

Atherosclerosis

Chen et al.141 ApoE2/2 mice L. acidophilus ↓ Atherosclerotic burden
Uchida et al.179 Rabbits on a high

cholesterol diet
Exopolysaccharide ↓ Atherosclerotic lesions

Oxman et al.180 Sprague-Dawley rats L. bulgaricus-51 ↓ Reperfusion tachyarrhythmia
↑ Functional recovery of the ischemic rat hearts
↓ Norepinephrine release

Naruszewicz et al.181 Healthy persons (36) L. plantarum 299v ↓ Systolic BP and fibrinogen
↓ F2-Isoprostanes and IL-6
↓ Monocyte adhesion to endothelial cells

Inflammation
Neyrinck et al.182 Mice High-molecular-weight arabinoxylane ↑ Bifidobacteria

↓ Inflammation
Cani et al.124 Mice Oligofructose ↓ Endotoxemia and proinflammatory cytokines
Dewulf et al.183 Obese women (30) Inulin/oligofructose ↓ Endotoxemia
Andreasen et al.184 Patients with T2DM (45) L. acidophilus NCFM75 Preserved insulin sensitivity

↓ Inflammation
Schiffrin et al.185 Elderly persons (74) Oligosaccharides ↓TNF-a and IL-6 mRNAs

↓Serum sCD14
Andreasen et al.184 Patients with T2DM (45) L. acidophilus Preserved insulin sensitivity

Did not affect systemic inflammation
Anderson et al.186 Elective surgical

patients (137)
Combination of probiotics No measurable effect on bacterial translocation

or systemic inflammation
Kotzampassi et al.187 Trauma patients Probiotics along with and inulin, oat

bran, pectin, and resistant starch
↓ Rate of systemic inflammatory response,

syndrome, infections, severe sepsis, and mortality

HD, hemodialysis; T2DM, type 2 diabetes mellitus.
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and macrophages in vitro and reduced
systemic inflammation in mouse models
of endotoxemia and necrotizing entero-
colitis.156

Adsorption of Uremic Toxins
Oral Adsorbents
AST-120 is an oral adsorbent consisting of
microspheres made from porous carbon
material. Administration of AST-120 par-
tially restored the epithelial tight-junction
proteins and reduced plasma endotoxin
and markers of oxidative stress and in-
flammation in CKD rats.157 In another
study, AST-120 decreased serum levels of
indoxyl sulfate and slowed theprogression
of CKD by reducing the profibrotic gene
expression in the rat remnant kidney.158

In patients with CKD, administration of
AST-120 significantly decreased the se-
rum and urine levels of indoxyl sulfate
and improved the slope of the 1/serum
creatinine-time plot.159,160 AST-120 treat-
ment of patients with CKD has also de-
layed the time to dialysis initiation.161

Miscellaneous
The 3-hydroxy-3-methylglutaryl coen-
zyme A reductase inhibitors (statins) are
lipid-loweringdrugswithanti-inflammatory
properties.162 Abe et al.163 demonstrated
that statins partially attenuated the devel-
opment of adipose tissue inflammation
in obese mice, which might be associated
with an inhibitory effect of statins on
TLR4-triggered expression of IFN-b via
MyD88-independent signaling pathway
in macrophages. Atorvastatin is known
to affect LPS indirectly by causing im-
paired TLR4 recruitment into the lipid
raft, thereby affecting anti-inflammatory
responses.164 In a small study, optimized
BP control with antihypertensive agents
decreases endotoxin levels.165 The mech-
anism of this beneficial effect is un-
known.

CONCLUSIONS AND FUTURE
DIRECTIONS

Resident microbiota outnumber the hu-
man host cells by 10-fold, withmetabolic
activity in excess of that of the liver and a
combined microbiome that is estimated

to be 100 times greater than that of the
human.166 In 2007, the Human Micro-
biome Project was established to charac-
terize the human microbiome and
analyze its role in health and disease.167

The project serves as a “roadmap” for
discovering the roles these microorgan-
isms play in human health and disease,
with the goal of metagenomic character-
ization of microbial communities from
300 healthy individuals over time. Not
long ago, the products of intestinal pu-
trefaction were considered the primary
uremic toxins. The recent explosion of
knowledge on the metabolic potential of
gut microbiome and its critical role in
the pathogenesis of several chronic in-
flammatory diseases has led the nephrol-
ogist to refocus on the gut as a potential
cause of CKD-related complication and
a target organ for attenuating uremia-
related complications. Therefore, it is
time for more clinical and basic research
studies to further our understanding of
the role of the gut microbiome in pro-
gression of CKD and its associated com-
plications. Finally, interventions aimed at
establishing gut symbiosis and blocking
microbiome-related pathogenic bio-
chemical pathways should be explored
in order to develop interventions to ame-
liorate uremic syndrome.
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